2015-06-152014-09-26CASTRO, Aline Claudino de. Síntese, caracterização e atividade antimicrobiana de iminocomplexos de paládio(ll). 2014. 84 f. Dissertação (Mestrado em Química) - Universidade Federal de Alfenas, Alfenas, MG, 2014.https://repositorio.unifal-mg.edu.br/handle/123456789/387Every year growing research of new metal compounds for pharmacological purposes, this because the metal ions present interactive possibilities with various biomolecules. Thus, there is a variety of metal complexes in clinical use, however, is often unknown its action. Involvement of Palladium the organometallic complex is being discussed as well, called the cyclopalladated, which are characterized by having one link Pd-C and one coordination bond with an electron donor atom, forming a chelate ring. This formation occurs due to the M-C bond produced by the rupture of intramolecular C-H bond ciclometalantes of certain ligands. It is known that organopaladadas species, especially those mono-and binucleated have applications in medicinal chemistry because of their chelating properties of DNA. It is also worth noting some other applications of organometallic palladium complexes: Supramolecular Chemistry in homogeneous catalytic processes, and obtaining liquid crystalline materials. In addition to their pharmacological potential as anticancer agents (to provide efficacy in inhibiting proliferation of tumors compared to cisplatin, a drug used for this purpose), antileishmanial, antibacterial, antifungal and tuberculostatic. In this context, the present work is guided in the synthesis and characterization of novel palladium complexes (II) with possible pharmacological applications. The following compounds are obtained p-aniace binder precursor complex [Pd 2 (p-aniace) 2Cl2] from the reaction of the ligand with the p-aniace tetrachloropalladate (II) and lithium from the precursor complex is obtained the too complex: [Pd3(p-aniace)2(N3)2Cl2], [Pd3(p-aniace)2NCS)4], [Pd2(p-aniace)2(PPh3)(Cl)2] and [Pd2(p-aniace)2(dppe)(Cl)2]. The synthesized compounds were characterized by melting and decomposition temperature, elemental analysis, IR spectroscopy, vibrational region, solubility studies and thermogravimetric (TG-DTA). Moreover, the ligand and complex containing phosphines were also characterized by nuclear magnetic resonance. Aiming to employ these compounds in biological assays for antimicrobial activity against the fungi and bacteria experiments in vitro forward to fungi of the genus Candida (Candida albicans ATCC 10231, Candida tropicalis ATCC 750, Candida krusei ATCC 6258) and Gram positive bacteria (Staphylococcus aureus ATCC 6538) and gram negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853).application/pdfAcesso Abertohttp://creativecommons.org/licenses/by-nc-nd/4.0/PaládioFosfinaBioensaioQUIMICA::QUIMICA INORGANICASíntese, caracterização e atividade antimicrobiana de iminocomplexos de paládio(ll)DissertaçãoAlmeida, Eduardo Tonon De