2017-10-052014-11-12BELI, Euzebio. Estudo da diversidade microbiana em reator ASBR no tratamento da drenagem ácida de minas sitética sob diferentes condiçoes operacionais. 2014. 73 f. Dissertação (Mestrado em Ciência e Engenharia Ambiental) - Universidade Federal de Alfenas, Poços de Caldas, MG, 2014.https://repositorio.unifal-mg.edu.br/handle/123456789/1031The microbial characterization of this study was carried out by molecular biology techniques, of granular sludge samples from precipitation of the metals iron, zinc and copper in sulphide generated from a biological sequencing batch reactor (ASBR) to reduce the sulphate of synthetic acid drainage mines in its different operational phases. The reactor was inoculated with granular sludge from UASB reactor treating effluent from poultry slaughterhouse operating in ratio COD/sulphate 1.0. Ethanol was used as electron donor and sodium sulphate as electron acceptor. For this study, samples of sludge were taken on pH 5.0; pH 4.0; pH 4.0 + Fe2+, pH 4.0 + Fe2+; Zn2+; pH 4.0 + Fe2+; Zn2+; Cu2+ whenever maximum reduction of sulphate in the reactor occurred. The inoculums was also studied for comparison. After collecting all samples, the extraction of DNA was carried out, followed by purification and amplification to RNAr16S for the studied Domains and the sequences were separated by DGGE. The structure of the communities was analyzed in view of the composition and richness of DGGE bands in microbial consortia. The DGGE bands’ profile analysis allowed visualization of the dynamics of the microbial population present in each phases of the AMD biological treatment. Results showed that a higher variation occurred in diversity of microorganisms of the Bacteria domain than that in Archaea in treatment with the operating parameters studied. Among these observations, it is perceived that the successive decreases in pH were less influential in diversity than it was the metals additions, mainly when there was addition of Fe. The Bacteria domain presented higher reductions bands than the Archaea domain, which suffered lower influences from operational conditions. When comparing the diversity of Bacteria and Archaea in this study, it is observed that the bacteria were 56.5% higher than the Archaea in terms of diversity by DGGE bands presented. Diminishing in pH and successive addition of the metals Fe, Zn and Cu were associated with temporal changes in the structure of bacterial community. In sequencing analysis to Bacteria domain, although the low quality of the sequence of the cut bands, it was possible to make a comparison between BLAST and the base of sequence of the NCBI. One of the bands presented a similarity of 88% and 87 with uncultivated clones of Clostridum and Geobacter, respectively. These microorganisms are reported to be sulphate reducers. Two other bands presented 91% similarity with the uncultivated clone of bacteria. For the Archaea domain the comparative analysis indicated similarity of three of the five bands with the uncultivated clones of archaeon Methanomicrobiales F5OHPNU07IK8FO and two of the bands with the genus Methanosaeta sp. clone DI CO3, both of then reported as present in granular sludge of several anaerobic treatments. It is concluded that the estimate of diversity allowed inferring that the alterations in the composition of microbial communities occurred due the imposed operations conditions.application/pdfAcesso Abertohttp://creativecommons.org/licenses/by-nc-nd/4.0/ASBR.Biologia molecular.Diversidade microbiana.SANEAMENTO AMBIENTAL::MICROBIOLOGIA APLICADA E ENGENHARIA SANITARIAEstudo da diversidade microbiana em reator ASBR no tratamento da drenagem ácida de minas sintética sob diferentes condições operacionaisDissertaçãoBrucha, Gunther