2015-06-152013-06-13BASTOS, Mirele. Modelagem computacional de nanotubos de carbono como nanofiltros e nanosensores para controle ambiental: um estudo de primeiros princípios. 2013.114 f. Dissertação (Mestrado em Química) - Universidade Federal de Alfenas, Alfenas, MG, 2013https://repositorio.unifal-mg.edu.br/handle/123456789/385In recent decades, technological and industrial advances and lack of care in the disposal of toxic waste generated for the environment, such as, heavy metals nickel, lead, cadmium, chromium, copper, mercury, zinc and manganese has been a great concern of public health as exposure to the population of these. Given this, we propose to study through computer simulations based on Density Functional Theory (DFT), using the SIESTA code, he interactions of metals Ni, Cd and Pb with carbon nanotubes (10,0) single-walled (SWCNT), pure (SWCNT-P) and functionalized with organic grouping carboxyl (SWCNT-COOH) and hydroxyl (SWCNTOH) in order to suggest nanomaterials such as filters and sensors of these metals. The first investigation was based on the study of changes of structural and electronic properties in the SWCNT-P after functionalization. In this study, we observed changes in bond distances and distortion tubes after functionalizations, showing a functionalization of covalent character. The study of the electronic properties for SWCNT-COOH showed through electronic band structure, the functionalization provoked an induction of polarization of spin (not observed for the SWCNT-P) and a significant reduction in gap. For the SWCNT-OH there was no induction polarization of spin, however there were a change in the character of the conductivity of semiconducting to metallic. After that, we study the interactions of metals with nanotubes. The metals Ni and Pb were chemisorbed nanotubes. Already Cd was only quimiossorvido in SWCNT-OH. Through the binding energies we observed that functionalizations increased reactivity of the nanomaterial, but this makes it difficult to reuse the same. Therefore, when the interest is to reuse the material used as a filter, we suggest the SWCNT-P, since it showed low binding energies with metals. The study of the electronic properties of the resulting systems was through the electronic band structure, the total state density (DOS), state density partial(projected) (PDOS), calculation of the resulting magnetic moment, of charge transfer and study of contour map of electron density. Through the electronic band structures, we saw that the character of adsorption directly influence the electronic properties, because when the Cd was fisisorbed few modifications were observed. From all these calculations the nanotube which showed greater sensitivity in conductivity for the three metals was SWCNT-OH and with the highest selectivity in magnetic character was SWCNT-COOH. Thus, the nanotubes functionalized are best suited for the construction of devices for sensing these metals.application/pdfAcesso Abertohttp://creativecommons.org/licenses/by-nc-nd/4.0/NíquelCadmioChumboNanotubos de CarbonoSimulação por ComputadorQUIMICA::FISICO-QUIMICAModelagem computacional de nanotubos de carbono como nanofiltros e nanosensores para controle ambiental: um estudo de primeiros princípiosDissertaçãoCamps Rodriguez, Ihosvany