2018-05-022018-02-21CASTRO, Mayara Santos de. Fotobiomodulação do burst oxidativo e da atividade microbicida de monócitos humanos in vitro e análise da expressão gênica em macrófagos derivados destas células. 2018. 127 f. Dissertação (Mestrado em Ciências Odontológicas) - Universidade Federal de Alfenas, Alfenas, MG, 2018.https://repositorio.unifal-mg.edu.br/handle/123456789/1149Photobiomodulation (PBM) comprises the use of light within the visible and infrared spectrum to stimulate the production of adenosine triphosphate (ATP), nucleic acid synthesis, generation of reactive oxygen species (ROS) and cell proliferation, thus promoting beneficial therapeutical results, such as the acceleration of tissue repair, analgesia and activation of cells of the immune system. In that way, the present research aimed to elucidate the effects of PBM on human monocytes in vitro by possibly stimulating the oxidative burst of these cells and, consequently, enhancing the cellular immune defense against microorganisms, in addition to analyzing the gene expression at the messenger RNA (mRNA) level of CD68, CD80, CD163, CD204, IL-6, TNF-α, IL-10 and SOD1 in macrophages derived from these cells. Thus, primary cultures of human monocytes were irradiated with an InGaAlP (660nm)/ GaAlAs (780nm) - Twin Flex® diode laser (MMO, São Carlos, SP, Brazil), operating with power of 40mW, beam area of 0.04cm2, power density of 1W/cm2 and independent doses of 200J/cm2, 400J/cm2 e 600J/cm2. Cells were then submitted to the chemiluminescence assay for oxidative burst evaluation and quantification of intracellular and extracellular ROS production. A microbicidal activity assay was performed against the fungus Candida albicans. As positive and negative controls, phorbol 12-myristate 13-acetate (PMA) and diphenyleneiodonium (DPI) were used, respectively. Cell viability was verified by Trypan blue reagent. Besides, irradiated human monocytes were cultured for 72 hours in order to observe the differentiation of these cells into macrophages by stimuli related to macrophages activated by the classical pathway (M1) (LPS and Candida albicans) and macrophages activated by the alternative pathway (M2) (M-CSF). Total RNA was extracted from each experimental group and submitted to reverse transcription and real-time PCR. GAPDH was used as endogenous control and the relative expression of each gene was calculated using the 2-ΔCt method. The production of nitrite (NO2) was also measured by the Griess reaction. The results obtained were analyzed by ANOVA and Tukey's test at a significance level of 5%. For data with unequal variances, Kruskal-Wallis and Newman-Keuls post-test were used. In that way, irradiated monocytes presented a significant increase in intracellular and extracellular ROS production compared to the control group (P < 0.001). The wavelength of 660nm and the dose of 400J/cm2 were the most relevant parameters (P < 0.001). As a consequence of this high functional profile of the irradiated monocytes, the fungicidal capacity of the monocytes against Candida albicans was shown to be greatly increased (P < 0.001). In addition, it was observed that PBM (660nm; 400J/cm2) did not cause damage to the cell viability of monocytes in the days following laser irradiation. Analysis of the gene expression revealed that PBM (660nm; 400J/cm2) significantly increased the expression of the proinflammatory cytokine TNF-α by the irradiated monocytes (P = 0.0302), bringing them closer to a Th1 immune response. Additionally, a significant increase in NO2 production by irradiated monocytes was also observed (P < 0.05). Therefore, PBM, as employed in this study, was able to increase ROS and NO2 generation, enhance microbicidal activity against Candida albicans and increase TNF-α expression, suggesting a modulation of PBM in the induction of related pro-inflammatory agents to the functional profile of M1. We envisage in a near future, the reproduction of these results in human monocytes in vivo, which would collaborate to the treatment of oral candidoses, for example.application/pdfAcesso Abertohttp://creativecommons.org/licenses/by-nc-nd/4.0/Terapia a Laser de Baixa IntensidadeMonócitosMacrófagosNADPH oxidaseEspécies de Oxigênio ReativasCandida albicansCIENCIAS DA SAUDE::ODONTOLOGIAFotobiomodulação do burst oxidativo e da atividade microbicida de monócitos humanos in vitro e análise da expressão gênica em macrófagos derivados destas célulasDissertaçãoSperandio, Felipe Fornias