Logo do repositório
  • Navegar por
    • Comunidades e Coleções
    • Autor
    • Título
    • Assunto
    • Orientador(a)
    • Cursos
    • Tipo de Documento
  • Instruções
    • Para autores (submissão)
    • Tutoriais
    • Orientações para normalização
  • Sobre
    • Apresentação
    • Documentos
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Silva, Igor Caetano"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Análise e aperfeiçoamento de modelos inteligentes para detecção de lâmpadas de iluminação pública
    (Universidade Federal de Alfenas, 2022-07-29) Silva, Igor Caetano; Salgado, Ricardo Menezes; Ohishi, Takaaki; Varejão, Flávio Miguel
    Há alguns anos, uma mudança na legislação passou a responsabilidade de gerenciamento e manutenção da rede de iluminação pública das companhias elétricas (agora responsáveis apenas pelo faturamento da energia utilizada) para as autoridades municipais. Essa mudança acarretou em diversos problemas de desinformação, nos quais muitas vezes a companhia elétrica não é notificada sobre mudanças na rede de iluminação pública. Para evitar perdas comerciais, as companhias passaram a enviar times de conferência manual, processo caro, moroso e pouco confiável. Neste sentido, este trabalho tem como objetivo aprimorar o estudo de detecção inteligente de lâmpadas de iluminação pública, através da otimização dos modelos propostos por Soares et al. (2015), capazes de classificar o tipo e potência de lâmpadas de pontos de iluminação pública de forma eficiente como uma solução alternativa para este problema. A proposta é utilizar algoritmos de diferentes níveis de complexidade (tanto de abordagem tradicional quanto aprendizado profundo), em conjunto com técnicas mais complexas de validação, seleção de características, transformação de dados e de otimização de hiperparâmetros. Os resultados mostram que os modelos com algoritmos mais complexos (máquina de vetores de suporte, XGBoost, floresta aleatória e perceptron multicamadas) conseguem atingir uma acurácia média final de 80-86% de acerto que ao serem comparados por testes t de Student não apresentaram evidências de diferença significativa a nível de 5%.

Nossas redes

Logo do repositório

Universidade Federal de Alfenas (UNIFAL-MG)

Sistema de Bibliotecas

E-mail: repositorio@unifal-mg.edu.br

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso

Desenvolvido por

Logo acervos digitais