Conexões existentes entre equações diferenciais fuchsianas, geometria hiperbólica e códigos corretores de erros, aplicadas em canais discretos sem memória

Carregando...
Imagem de Miniatura

Data

2023-07-28

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Alfenas

Resumo

A Teoria dos C ́odigos Corretores de Erros, da Geometria Hiperb ́olica e das Equa ̧c ̃oes Diferenciais Fuchsianas vˆem se tornando presente nos trabalhos de diversos pesquisadores, e s ̃ao ́areas com diversas possibilidades de aplica ̧c ̃oes, como no estudo dos erros que podem ocorrer no processo de transmiss ̃ao da informa ̧c ̃ao. Neste trabalho s ̃ao apresen- tadas poss ́ıveis conex ̃oes existentes entre c ́odigos geometricamente uniformes, elementos de geometria hiperb ́olica e equa ̧c ̃oes diferenciais fuchsianas, obtidas por meio de estudos te ́oricos com as principais defini ̧c ̃oes e propriedades das respectivas ́areas. Foram conside- radas singularidades complexas de equa ̧c ̃oes diferenciais fuchsianas que tamb ́em geravam constela ̧c ̃oes de sinais no plano complexo. Posteriormente, foi analisada a existˆencia de um c ́odigo perfeito ou quase perfeito, os quais apresentaram a mesma capacidade de corre ̧c ̃ao de erros, independente da singularidade geradora do c ́odigo. Por fim, foi poss ́ıvel representar as palavras-c ́odigo como entradas e sa ́ıdas de um canal discreto sem mem ́oria, mostrando que a probabilidade de erro, p, est ́a relacionada ao n ́umero de palavras-c ́odigo sobre a constela ̧c ̃ao. Um outro caminho estabelecido foi analisar essas singularidades como v ́ertices de um triˆangulo hiperb ́olico para analisar o gˆenero da superf ́ıcie associada, por meio dos emparelhamentos dos lados desse triˆangulo, al ́em de estabelecer uma conex ̃ao com o canal bin ́ario sim ́etrico C2,2, verificando que a probabilidade de erro tamb ́em ́e a mesma, independente da singularidade transmitida. Al ́em disso, apresentamos novos c ́odigos perfeitos e quase perfeitos sobre an ́eis quocientes de inteiros gaussiano, destacando uma estrutura geom ́etrica diferente da encontrada na literatura. Os resultados expostos neste trabalho contribuem para o desenvolvimento de ferramentas que podem ser aplicadas tanto na Matem ́atica quanto na Engenharia, uma vez que foram utilizados conceitos alg ́ebricos e da Teoria da Informa ̧c ̃ao, ́areas em franca expans ̃ao.



Palavras-chave

Códigos Geometricamente Uniformes, Triângulos Hiperbólicos, Singularidades, Constelação de Sinais, Canal Binário Simétrico

Citação

GUSMÃO, Mariana Gabriela. Conexões existentes entre equações diferenciais fuchsianas, geometria hiperbólica e códigos corretores de erros, aplicadas em canais discretos sem memória. 2023. 78 f. Dissertação( Programa de Pós-Graduação em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas,Alfenas, MG, 2023.